GCE MARKING SCHEME

SUMMER 2016

PHYSICS PH5 1325/01

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Question		Marking details	Marks Available
1	(a)	$\lambda=\frac{\ln 2}{T_{\frac{1}{2}}} \text { used }$	1
		answer $=0.516[\mathrm{~s}]$	1
	(b)	$A=\lambda N$ used	1
		Correct method for finding N (i.e. 1.2×10^{14}) e.g. $n=\frac{4.22 \times 10^{-11}}{0.211}$ and $N=n \times N_{\mathrm{A}}$	1
		Answer $=1.62 \times 10^{14}[\mathrm{~Bq}]$	1
	(c)	$\mathrm{e}^{-1.343 \times 2.4} \text { or } \frac{1}{2^{4.65}}$	1
		Answer $=3.98[\%]$	1
	(d)	$0.001=\mathrm{e}^{-1.343 t}$ (allow factor 10 slips) or ~ 10 half-lives	1
		Answer $=5.14$ [s] (accept $5.1 \mathrm{~s}-5.2 \mathrm{~s}$)	1
	(e)	[Can be] ingested (accept inhaled)	1
		Large activity / short half-life) and [alpha highly] ionising Accept high equivalent dose Don't accept high dose only (needs ionising too) and treat reference to daughter nuclei as neutral	1
		Question 1 Total	[11]

Question		Marking details	Marks Available
2	(a)	Attempt at $8 \mathrm{n}+8 \mathrm{p}$ - mass of oxygen nucleus	1
		$\times 931$ and $\div 16$ or use of $m c^{2}$ and $\div 16$	1
		Correct answer $=8.0[\mathrm{MeV} /$ nucleon $]$ or $1.28 \times 10^{-12}[\mathrm{~J}]$	1
	(b)	Conversion of energy to mass e.g. $\frac{9.594}{931}=0.0103[u]$	1
		Correct application of conservation of mass-energy e.g. $(15.9905 \times 2)-(4.0015+0.0103)$	1
		Answer approx correct e.g. 28 u **unit mark** or $4.6 \times 10^{-26} \mathrm{~kg}$	1
		27.9692 (accuracy mark, also available for 27.9898 and without unit) Accept $4.64289 \times 10^{-26}[\mathrm{~kg}]$	1
	(c)	The reaction releases [9.594 MeV of] energy or is exothermic (some mention must be made of the energy on the RHS) Don't accept 9.594 MeV is lost or left over	1
		Products are more stable OR mass must have been lost or PE is lost	1
		Binding energy of [RHS / Si and He] greater or converse	1
	(d)	Conservation of momentum and energy mentioned	1
		Momentum states the products must be stationary or final momentum equals zero or accept products have $\mathrm{KE}>16.5 \mathrm{MeV}$	1
		but this contravenes conservation of energy or only works if two products are present or 16.5 MeV can't be released or accept KE of product contravenes conservation of momentum	1
		Question 2 Total	[13]

Question			Marking details	Marks Available
3	(a)	(i)	Adding $1.5 \mu \mathrm{~F}$	1
			Attempting $\frac{1}{6.0}+\frac{1}{\text { others }}$	1
			Correct answer $2[\mu \mathrm{~F}]$ (allow $1 / 3$ for $6.75 \mu \mathrm{~F}$)	1
			Correct method e.g. using $\frac{Q^{2}}{2 C}$ or $0.5 C V^{2}$ or $0.5 Q V$	1
			Correct explanation e.g. $1.5 \mu \mathrm{~F}$ has twice the pd but $4 \times$ less C Or $1.5 \mu \mathrm{~F}$ has half the charge and a quarter of the C Or $6.0 \mu \mathrm{~F}$ has half the pd but twice the charge Or $3.0 \mu \mathrm{~F}$ has twice the pd , half the charge and energy shared between $2 \times 1.5 \mu \mathrm{~F}$	1
	(c)	(i)	Using $T_{1 / 2}=\ln 2 \times R C$ or taking logs correctly e.g. $\ln \frac{Q}{Q_{0}}=\frac{-t}{R C}$	1
			Algebra i.e. $R=\frac{T_{\frac{1}{2}}}{C \ln 2}$	1
			Answer $=8420[\Omega]$	1
		(ii)	$I_{0}=\frac{V_{0}}{R} \text { used }$	1
			$\left.V_{0}=\frac{Q_{0}}{C} \text { used (i.e. } V_{0}=12.4 \mathrm{~V}\right)$	1
			$I_{0}=1.47[\mathrm{~mA}]$ ecf	1
			Question 3 Total	[11]

Question			Marking details	Marks Available
5	(a)	(i)	Attempt at $E=m c^{2}$ or $931 \times m_{e}\left(\right.$ with m_{e} in u) $2 \times 9.11 \times 10^{-31} \times \frac{9 \times 10^{16}}{1.6 \times 10^{-19}} \text { seen or } 2 \times 931 \times \frac{1}{1836}$	1 1
		(ii)	KE [of particles]	1
	(b)		$B=\frac{\mu_{0} I}{2 \pi a} \text { used }$	1
			Realising two 19 A fields cancel (or evident in calculations)	1
			$5.56 \times 10^{-5}[\mathrm{~T}]\left(6.33 \times 10^{-5} \mathrm{~T}\right.$ only score 1 of first 3 marks)	1
			Out of paper (independent) Don't accept upwards	1
	(c)	(i)	$B q v=\frac{m v^{2}}{r}$	1
			Explanation of what this means e.g. equating magnetic force and centripetal force	1
			Must have m_{e} and e in final equation	1
			Clear algebra leading to correct final version of equation	1
		(ii) (iii)	Answer $=5.7$ [m]	1
			Field not uniform or field changes	1
			Over 5.7 m or even though motion perpendicular to B or reference to the circle being too big	1
			Question 5 Total	[14]

Question		Marking details	Marks Available
6	(a)	Red shift (accept Doppler) shifts of starlight / galaxies [measured] but not for planets The further the galaxy the greater the red-shift / velocity (or red-shift is proportional to galaxy distance) Consistent with initial explosion e.g. expansion is consistent with the Big Bang (or consistent with matter starting from a point)	1 1 1
	(b)	Speeds near the speed of light not greater than the speed of light accept velocities are large fractions of the speed of light Don't accept at or greater than the speed of light	1
	(c)	Current content of universe explained clearly i.e. baryons (\& leptons) not antibaryons (and anti-leptons) Argument for symmetry breaking (Violation of Cons of Baryon not enough) - e.g. must have slight excess of baryons etc.	1 1
	(d)	Smaller mass linked to less energy Less energy or lower temperature linked to the later time Smaller masses produced at lower temperatures - 1 mark	1 1
	(e)	Fusion [of nuclei] stated Due to high T (or velocity or energies) [around 10^{-6} (to 3 min) after Big Bang]	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	(f)	Universe was cooler or electrons or protons have lower energy Electrons combined with protons (accept nuclei) Photon energy too low for atoms/electrons to absorb Accept em radiation was no longer absorbed [by electrons/ions] or em radiation is no longer being scattered	1

Question			Marking details	Marks Available
7	(a)	(i)	Core - avoids flux leakage or extra detail	1
			Low resistance coils - avoids Ohmic heating or WTTE (extra detail low resistivity wires)	1
			Laminations - avoids eddy currents (insulation between laminations)	1
			Suitable alloy - avoids hysteresis losses (named alloy e.g. silicon steel)	1
		(ii)	Valid good comment regarding LN_{2} e.g. efficiency gains outweigh LN_{2} costs Accept: larger B-fields due to larger currents, Oil free, Lower weight/mass, Smaller volume	1
	(b)	(i)	$\omega L=\frac{1}{\omega C} \quad$ or $f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}}$ used	1
			Answers shown clearly e.g. $\frac{1}{2 \pi} \sqrt{\frac{1}{0.034 \times 47 \times 10^{-6}}}$ etc. (1 mark each) Or $272.9[\mathrm{~Hz}]$ or 125.9 [Hz]	2
		(ii)	ω decreases (if using $Q=\frac{\omega L}{R}$) or quoting $Q=\frac{1}{R} \sqrt{\frac{L}{C}}$ Or ω decreases less than C increases if using $Q=\frac{1}{\omega C R}$ Q factor decreases (independent)	1 1
		(iii)	$I=\frac{230}{36}$ or $V_{L}=V_{C}$ or all pd across resistor etc.	1
			$I=6.38$ [A]	1
			$V_{C}=\mathrm{I} \times \frac{1}{\omega C}$ or $V_{L}=\mathrm{I} \times \omega L$ used	1
			$V_{C}=373[\mathrm{~V}]$	1
		(iv)	Current is the same (or calculated correctly)	1
			Reactance/impedence of inductor is less (lower frequency) or calculated correctly) or $\frac{1}{\omega C}$ used/calculated correctly	1
			Hence, pd across capacitor is less (not an independent mark) (or calculated correctly)	1
			Alternative: Q factor smaller (1) same V_{R} (1) hence smaller V_{C} (1)	

Question		Marking details	Marks Available
7	(c)	$Z=\sqrt{X_{C}{ }^{2}+R^{2}}$ used or X_{C} calculated (36 $\left.\Omega\right)$ Current $=\frac{10}{50.9}=196 \mathrm{~mA}$ or correct method e.g. vectors or $\frac{36}{\sqrt{36^{2}+36^{2}} \times 10}$ Answer $=7.07[\mathrm{~V}]$ Question 7 Total	1
$[20]$			

Question			Marking details	Marks Available
8	(a)	(i) (ii)	wavelength	1
			$\frac{5 \lambda}{2}$ or equivalent appears...	1
			... equated to "path difference" or to path difference described in words or to $x-y$ or to $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}$ even if these symbols not properly explained. Diagram clearly showing meanings of whatever symbols used in equation.	1 1
	(b)	(i)	Compass points at right angles to current-carrying wire if Earth's field cancelled out or current-carrying wires (or currents) exert forces on each other (1) For currents in same direction, attraction and/or for currents in opposite directions, repulsion (1) or [current-carrying] coils behave like magnets (1) either ends of coils attract/repel like poles of magnets, or pivoted coil behaves like compass (1)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
		(ii)	there are [electric] currents inside circulating in [closed] loops.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	(c)		[Vortex rotation represents] magnetic field. Accept em wave propagating.	1
			Field directions opposite above and below shaded line of idlers.	1
			Suggests field lines to be circles around line of idlers or accept reference to right hand grip rule or equivalent.	1
	(d)	(i)	Correct strategy (i.e. attempt to use Pyth. or a valid trig. method to find light path length, then division by c). Tolerate slips.	1
			Light path length $=26.0 \mathrm{~m}$ [accept $26 \mathrm{~m}, 26.00 \mathrm{~m} . .$.] Time $=86.7 \mathrm{n}[\mathrm{s}]$ (accept 86.6 ns . Ecf on slips in calculating light path, provided wrong answer (e.g. 43.3 ns) is commented on.	1 1
		(ii) (iii)	$80.0 \mathrm{n}[\mathrm{s}]$. No sf penalty. Ecf on 40.0 ns if similar penalised in (i) (1) improper time: events in different places; proper time: events in same place. d (i) is improper, OR d(ii) is proper	1 1 1

| Question | | Marking details | $\begin{array}{c}\text { Marks } \\ \text { Available }\end{array}$ |
| :--- | :--- | :--- | :--- | :---: |
| (iv) | $\begin{array}{l}v=1.15 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\left[1.25 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \text { is WRONG] }\right. \\ \gamma=\frac{1}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}}=1.08 \text { ecf on } v \\ \text { time(i) }\end{array}$ | $1.08+$ comment on agreement with gamma | |
| $\begin{array}{l}\text { time(ii) } \\ \text { or by implication if consistency check carried out differently. } \\ \text { Question 8 total }\end{array}$ | 1 | | |$]$

Question	Marking details	Marks Available
(iii) (iv)	Correct manipulation and substitution $Y=\frac{2800^{2} \times 0.3}{3 \times 1.65 \times 10^{-4} \times 0.0462} \quad$ (ecf on 0.0462 J) Use of $A=\pi r^{2} \quad$ or $\frac{\pi d^{2}}{4}\left(1.65 \times 10^{-4} \mathrm{~m}^{2}\right)$ $Y=1.03 \times 10^{11}\left[\mathrm{Nm}^{-2}\right] \quad$ [0 marks for if area incorrect] 3 $Y_{\mathrm{Q}}=3 Y_{\mathrm{P}}$ For same F, L and A Question 9 total	1 1 1 1 1 1 [20]

Question			Marking details	Marks Available
10	(a)	(i)	Voltage for A is higher Smaller minimum wavelength Accept the converse and accept $V_{\mathrm{A}}=2 V_{\mathrm{B}}$ Ignore any reference to intensity	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
		(ii)	Line spectra are in the same place Accept peaks for line spectra	1
		(iii)	$\begin{aligned} & h=\frac{e V \lambda}{c} / \text { identification of } \lambda_{\min }=15 \times 10^{-12}[\mathrm{~m}] \\ & h=6.72 \times 10^{-34}[\mathrm{~J} \mathrm{~s}] \end{aligned}$	1
		(iv)	$\begin{aligned} & V=\frac{h c}{e \lambda}(\text { ecf on } h \text { if wrong } h \text { used }) / \text { identification of } \lambda_{\text {min }}= \\ & 30 \times 10^{-12}[\mathrm{~m}] \\ & V=42000 \mathrm{~V} / 42 \mathrm{kV} / 41.4 \mathrm{kV} \text { must have units } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	(b)		Advantage better soft tissue contrast / no exposure to radiation / [good] imaging of the brain Disadvantage Claustrophobia / cost / not with a pacemaker/ Not good for imaging bone Ignore references to time	1 1
	(c)	(i)	Alternating high frequency (MHz) voltage / p.d. applied To piezoelectric crystal Crystal oscillates / vibrates (to produce ultrasound) (because crystal deforms when pd applied)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
		(ii)	$v=\frac{\Delta \lambda c}{2 \lambda} / 1.8 \mathrm{~m} \mathrm{~s}^{-1}$ must have units $v=0.9 \mathrm{~m} \mathrm{~s}^{-1}$ must have units	1 1
	(d)		Axis labelled with units Correct shape graph	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	(e)		Absorbed dose is energy absorbed per unit mass/ kg Dose equivalent $=$ absorbed dose \times quality factor Dose equivalent of alpha bigger than gamma / larger Q factor for alpha than gamma) Alpha far more ionising	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
			Question 10 total	[20]

Question		Marking details	Marks Available
	(iii)	Attempt at energy of solar panel for 25 years i.e. $1.12 \times 25 \times 365 \times 24($ ecf on efficiency \& daylight) division by kWh or MWh $\left(3.6 \times 10^{6}\right.$ or $\left.3.6 \times 10^{9}\right)$ Correct cost $=$ e.g £12.50 per MWh if 8 h per day and 20\% efficient Correct comparison with ecf e.g. £12.50 per MWh considerably cheaper - Accept comments regarding maintenance of panels e.g. moving costs etc Question 11 total	1

